Below follow a few examples showing that the results of proper cause-and-effect analyses, particularly when including
finances, are not always what managers expect or wish to learn.

The examples have been selected because we have found similar results in several countries and industries, yet they must not be considered as representative for all countries and industries. Just let us help you apply the ValueMetrix approach to your country and industry and you will find out what drives the behavior of your stakeholders!

Scores are influenced by demographics

Survey scores are often described as objective truths but be careful: They are influenced by the demographic profile of the respondents! In the exhibit to the left, all the respondents have rated exactly the same experience from an Internet-based bank yet it is obvious that women tend to give higher scores than men and elderly people higher scores than younger ones.
Thus, changes in overall scores may actually depend on changes in customer mix!

High scores are not equivalent to high margins

Just because customers give high scores they are not always more profitable for the vendor than other customers. This example is from a consulting firm where the higher satisfaction scores only explain about 1% of the changes in the margins obtained by the consulting firm!

Everything correlates

It is risky and often misleading to assume that a high score on a certain aspect of an experience of a company always shows that this aspect is a major driver of the stakeholders' behavior. These 44 graphs from a retailer survey shows the correlation between different aspects of the customer experience of the retailer and the customers' overall rating of this retailer. They all correlate. The inclination of the regression line is more or less the same for all the aspects!

Factor analysis needed to group the significant correlations

The human brain can't separate 44 aspects of an offering from each other. To make proper cause-and-effect analyses and when there are many aspects to analyze, such as in the retailer case above, a factor analysis is important as it can group the aspects into statistically significant factors. In the ensuing structural equations, there are typically only 3-5 such factors that have a significant impact on the behavior and thus are the behavior drivers to really evaluate!

Different drivers in different segments

When doing the cause-and-effect analyses, it is important to carefully look at the behavior drivers in different segments because they may differ considerably. This example indicates the differences between the Internet bank's active customers and those who now are "non-customers", i.e. they have accounts but neither deposits nor debt. In other cases, expect that elderly customers have other drivers than younger customers, well-educated customers have other drivers than those with basic education only etc. Thus, when you select an action you need to define who to influence, what to expect, and how to get the message across to the target segments!

Satisfaction and Recommendations - Emotionally positive but financially questionable

Just because respondents give high scores to a certain Overall Evaluation does not automatically mean that they also are inclined to select the same product or service the next time they need such a product or service. This makes the cause-and-effect analyses critical in connection with financial linkages; the impacts of score changes may be very strong for example relative Recommendations but vary greatly between segments in regard to selecting the same kind of product or service again!